Carrier, G. F. and H. P. Greenspan (1958), Water waves of finite amplitude on a sloping beach, J. Fluid Mech. 4, pp. 97-109.

Horikawa, K., Ed. (1988): Nearshore Dynamics and Coastal Process, University of Tokyo.

Isobe, M. and N. C. Kraus (1983), Derivation of a third-order Stokes wave theory, Technical Report No. 83-1, Yokohama National University, Japan, 41 pp.

Isobe, M. and N. C. Kraus (1983), Derivation of a second-order Cnoidal wave theory, Technical Report No. 83-2, Yokohama National University, Japan, 41 pp.

Kennedy, A. B., Chen, Q., Kirby, J. T., Dalrymple, R. A. (2000), Boussinesq modeling of wave transformation, breaking, and runup. Part I: 1D. J. Waterw. Port Coast. Ocean Eng. 126 (1), 39– 47.

Kirby, J. T., Wei, G., Chen, Q., Kennedy, A. B., Dalrymple, R. A. (1998), ‘‘FUNWAVE 1.0. Fully nonlinear Boussinesq wave model. Documentation and user’s manual.’’ Report CACR-98-06, Center for Applied Coastal Research, Department of Civil and Environment Engineering, University of Delaware.

M. B. Kabiling (1994), A model for two-dimensional nonlinear dispersive wave-current and three-dimensional beach deformation, Doctoral dissertation of Yokohama National University.

Nwogu, O. (1993), Alternative form of Boussinesq equations for nearshore wave propagation, Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 119(6), pp. 618-638

Nwogu, O. (1996), Numerical Prediction of breaking waves and currents with a Boussinesq model, Abstract for ICCE, Orlando 1996.

Patrick J. Lynett, Tso-Ren Wu, Philip L.-F.Liu (2002), Modeling wave runup with depth-integrated equations, Coastal Engineering 46 (2002) 89-107.

Pengzhi Lin, Chuanjian Man (2004), A staggered-grid numerical algorithm for the extended Boussinesq equations, Applied Mathematical Modelling (2005).

Peregrine, D. H. (1967), Long waves on a beach. J. Fluid Mech. 27, 815– 827.

Wei, G., Kirby, J. T. (1995), A time-dependent numerical code for extended Boussinesq equations. J. Waterw. Port Coast. Ocean Eng. 120, 251– 261.

Wei, G., Kirby, J. T., Grilli, S. T., Subramanya, R. (1995), A fully nonlinear Boussinesq model for surface waves: Part I. Highly nonlinear unsteady waves. J. Fluid Mech. 294, 71–92.

Zheng P. (1999), A high-order numerical model for waves and currents based on Boussinesq equations, Doctoral dissertation of the University of Tokyo.